机器视觉检测技术是工业4.0和物联网的关键技术
导读:机器视觉将机器学习与商业级的硬件融合在一起,为消费者和企业提供前所未有的感知环境的能力。除了这些技术,还有自动化和高速网络,共同构成了一场新的工业革命——工业4.0。它们将为工业带来一种低浪费、高效率工业活动的全新方式。
什么是机器视觉?
机器视觉是一种能让机器更好地感知周围环境的技术。它有助于高阶图像识别和更高级意识的决策。
为了利用机器视觉,需要使用高保真摄像机来捕捉环境或工件的数字图像。这些图像可以通过自动驾驶车辆(AGV)或机器人进行拍摄。然后机器视觉使用非常复杂的模式识别算法来判断它的位置、身份或条件。
机器视觉在物联网中处于什么位置呢?机器视觉使现有的物联网资产更加强大,能够更好地传递价值和效率。我们共同期待它创造出更多全新的机会。
增强传感器的作用:机器视觉使整个物联网中的传感器更加强大和有用。传感器不仅提供原始数据,还能提供一定程度的解释和抽象,可用于决策制定或实现更高级别的自动化。
降低带宽需求:机器视觉有助于降低大规模物联网构建的带宽需求。与原有方式相比——从数据源捕获图像和数据,然后将其发送到服务器进行分析,机器视觉通常从数据源进行研究。现代工业产生了数以百万计的庞大数据,借助于机器视觉和边缘计算,大量数据点可以直接转化为可执行的操作,而不需要传输到中间节点进行二次处理。
支持物联网自动化解决方案:机器视觉非常好地补充了物联网自动化技术。与QA人员相比,机器人检测的工作速度更快、更准确,而且一旦发现缺陷和异常,它们会立即向决策者提供相关数据。
提高机器人/协作机器人的安全性和实用性:利用机器视觉构建的导航系统赋予机器人/协作机器人更大的自主性和寻路能力,帮助它们与人类一起更快、更安全地工作。在地下仓库和其他具有高风险的环境中,机器视觉帮助机器人提高响应时间,减少不必要的错误及其损失。
使资产更加透明化:与传统模式相比,如今公司和产业的运作,在时间、材料和劳动力等资产浪费方面要少得多。机器视觉将继续服务于无人机、材料处理设备、无人驾驶车辆、生产线和检测站,以便更好地与物联网的其他部件交换详细和有价值的数据。
在工厂环境中,这意味着机器和人员能够更好地协调工作,减少瓶颈、摩擦和其他中断。
机器视觉检测系统工作原理:
一个完整的机器视觉检测系统的主要工作过程如下:
①工件定位传感器探测到被检测物体已经运动到接近机器视觉摄像系统的视野中心,向机器视觉检测系统的图像采集单元发送触发脉冲。
②机器视觉检测系统的图像采集单元按照事先设定的程序和延时,分别向摄像机和照明系统发出触发脉冲。
③机器视觉摄像机停止目前的扫描,重新开始新的一帧扫描,或者机器视觉摄像机在触发脉冲来到之前处于等待状态,触发脉冲到来后启动一帧扫描。
④机器视觉摄像机开始新的一帧扫描之前打开电子快门,曝光时间可以事先设定。
⑤另一个触发脉冲打开灯光照明,灯光的开启时间应该与机器视觉摄像机的曝光时间相匹配。
⑥机器视觉摄像机曝光后,正式开始新一帧图像的扫描和输出。
⑦机器视觉检测系统的图像采集单元接收模拟视频信号通过A/D转换器将其数字化,或者是直接接收机器视觉摄像机数字化后的数字视频信号。
⑧处理结果控制生产流水线的动作、进行定位、纠正运动的误差等。

从上述的工作流程可以看出,机器视觉检测系统是一种相对复杂的系统。大多监控和检测对象都是运动的物体,系统与运动物体的匹配和协调动作尤为重要,所以给系统各部分的动作时间和处理速度带来了严格的要求。在某些应用领域,例如机器人、飞行物体制导等,对整个系统或者系统的一部分的重量、体积和功耗等都会有严格的要求。
尽管机器视觉应用各异,归纳一下,都包含一下几个过程:
①图像采集:光学系统采集图像,将图像转换成数字格式并传入计算机存储器。
②图像处理:处理器运用不同的算法来提高对检测有影响的图像因素。
③特征提取:处理器识别并量化图像的关键特征,例如位置、数量、面积等。然后将这些数据传送到控制程序。
④判别和控制:处理器的控制程序根据接收到的数据做出结论。例如:位置是否合乎规格,或者执行机构如何移动去拾取某个部件。

无锡赛默斐视自成立以来一直专注于视觉检测技术的研究和应用,旨在帮助各行业企业提升产品质量,降低生产成本,实现产品质量检测的自动化和信息化。一直以来,赛默斐视专注于高水准的光学技术服务,并将自主研发技术作为核心竞争力,不断根据市场所需,创新研发出适应性产品,满足客户要求。公司核心产品包括:薄膜表面瑕疵在线检测系统,无纺布污点检测仪,纸病在线检测系统,带钢表面瑕疵检测系统等。